
AD-A246 154

NAVAL POSTGRADUATE SCHOOL
Monterey , California

~~DTIC "
THESIS FES2 11992

A PERFORMANCE ANALYSIS OF VIEW
MATERIALIZATION STRATEGIES FOR

GENERAL EXPRESSIONS

by
Curtis G. Barefield Jr.

September 1991

Thesis Advisor Magdi N. Kamel

Approved for public release; distribution is unlimited.

92-04380o o 19 It!!l!!ll~ il~l! !!!!

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVALABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b DECLASSIFICATIONIDOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

55

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 MontereyCA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Program tlement NO Project No

1
4" No Work UrC1t A,-.,ln

11 TITLE (Include Security Classifcation)

A PERFORMANCE ANALSYIS OF VIEW MATERIALIZATION STRATEGIES FOR GENERAL EXPRESSIONS

12 PERSONAL AUTHOR(S) Barefield, Curtis Gus Jr.

13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (year, month, day) 15 PAGE COUNT
Master's Thesis From TO 1991 September 110

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the olficial policy or position of the Department of Defense or the U.S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (continue on reverse of necessary and identify by block number)

FIELD GROUP SUBGROUP View processing strategies, semi-materialization, test database, view materialization

strategies

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Eticitent processing of views is critical to many real world applications such as surveillance systems which support military applications.
This thesis compares the performance of three view materialization strategies: semi-materialization. full materialization and query
modication. This thesis first develops a program that generates databases according to user specification. Second the generated databases
are used to conduct an empirical study on the three view materialization strategies using select-project-join and general expression views.
The results of the study indicate that for select-project-join view definitions, semi-materialization rerformed best for higher values of 1, Iv,
and all values offq with the database stored on hard disk. Full materialization performed best for oiwer values of P, 1. and all values of Fv
with the database stored in RAM. The results also indicate that the semi-materialization strategy is the best view processing method for
general expressions.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

o3NCLASlIIEDufLIMITED DSAMi ASREPORI 13 011USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Magdi N. Kamel 1408) 646-2494 AS / KA

DD FORM 1473,84 MAR 83 APR edition mav be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited.

A Performance Analysis of View Materialization Strategies

for General Expressions

by

Curtis G. Barefield Jr.
Lieutenant, United States Navy

B.S., Wayland Baptist University

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

September 1991

Author: 04cut4 .a

Approved by:

Magdi N. Kamel, Thesis Advisor

Rachel Griffin, Second Reader

David R. Whipple, Chairra
Department of Administrative ne

ii

ABSTRACT

Efficient processing of views is critical to many real

world applications, particularly real time applications such

as surveillance systems which support ffilitary applications.

This thesis compares the performance of three view

materialization strategies: semi-materialization, full

materialization and query modification. This thesis first

develops a program that generates databases according to user

specification. Second the generated databases are used to

conduct an empirical study on the three view materialization

strategies using select-project-join and general expression

views. The results of the study indicate that for select-

project-join view definitions, semi-materialization performed

best for higher values of P, lower values of 1, fv and all

values of fq with the database stored on hard disk. Full

materialization performed best for lower values of P, 1, and

all values of fv with the database stored in RAM. The results

also indicate that the semi-materialization strategy is the

best view processing method for general expressions.

Accession For Z

NTT3 GRA&I s

iii

D S . e ,'orDist cu

TABLE OF CONTENTS

I.INTRODUCTION.....................1

A. BACKGROUND.....................1

B. OBJECTIVE.....................3

C. SCOPE AND METHODOLOGY................4

D. ORGANIZATION OF STUDY................4

II. VIEW MATERIALIZATION STRATEGIES 5

A. QUERY MODIFICATION.................5

B. FULL MATERIALIZATION................6

C. SEMI-MATERIALIZATION................8

III. DATA GENERATION PROGRAM 10

A. GENERAL DESCRIPTION.................11

B. REQUIREMENTS...................12

C. NOTES ON PROGRAM DESIGN 13

D. PROGRAM MODULE OVERVIEW 15

1. Main Module..................15

2. Time Hack Module..................15

3. Type_Numeric Module 15

4. Type__Alpha Module 16

5. Type_Alphanumeric Module...........16

6. BoundedSequentialArray Module 16

iv

7. RandomGenerator Module 17

8. RandomLongArray Module 17

9. Counter Module 17

10. GenerateNumericArray Module 18

11. Print Modules 18

E. DETAILED DATA AND CONTROL FLOW 18

F. TESTING 21

IV. PERFORMANCE ANALYSIS 22

A. SUMMARY OF THE RESULTS FOR THE ANALYTICAL MODEL 22

B. EXPERIMENTAL SETUP 23

C. PERFORMANCE ANALYSIS 27

1. Model 1 : Select-Project-Join 27

a. Results for Database in RAM 27

b. Results for Database on Hard Disk . . . 33

c. Discussion of the results for Model 1 . 37

2. Model 2 : General Expressions 39

a. Results for Database in RAM 39

b. Results for Database on Hard Disk . . . 44

c. Discussion of Results for Model 2 . . . 52

V. CONCLUSIONS AND RECOMMENDATIONS 55

A. CONCLUSIONS 55

B. RECOMMENDATIONS AND FUTURE RESEARCH 56

v

APPENDIX A. DATA GENERATION PROGRAM............58

APPENDIX B. VIEW MATERIALIZATION SIMULATION PROGRAM . 77

LIST OFREFERENCES....................98

INITIAL DISTRIBUTION LIST.................99

vi

LIST OF FIGURES

Figure 1: Data generation program data flow overview. 10

Figure 2: Data generation program parameters and parameter

definitions 12

Figure 3: Data generation program control module

overview 14

Figure 4: View materialization parameter definitions.. 23

Figure 5: Default values for parameters 24

Figure 6: Access paths for relations 24

Figure 7: View definitions and query on the views. . . 26

Figure 8: Profile of database relations 26

Figure 9: Total cost per query in seconds vs. the ratio of

updates to the total number of operations P. . . . 29

Figure 10: Total cost per query in seconds vs. the

selectivity of the view predicate fv 30

Figure 11: Total cost per query in seconds vs. the

selectivity of the query on the view fq 31

Figure 12: Total cost per query in seconds vs. the number

of tuples modified by each update I 32

Figure 13: Total cost per query in seconds vs. the ratio

of updates to the total number of operations P. . . 34

Figure 14: Total cost per query in seconds vs. the

selectivity of the view predicate fv 35

vii

Figure L5: Total cost per query in seconds vs. the

selectivity of the query on the view fq 36

Figure 16: Total cost per query in seconds vs. the number

of tuples modified by each update 1 37

Figure 17: Total cost per query in seconds vs. the ratio

of updates to the total number of operations P. .. 40

Figure 18: Total cost per query in seconds vs. the

selectivity of the view predicate fv 41

Figure 19: Total cost per query in seconds vs. the

selectivity of the query on the view fq 42

Figure 20: Total cost per query in seconds vs. the number

of tuples modified by each update I 43

Figure 21: Total cost per query in seconds vs. the ratio

of updates to the total number of operations P for

7500 records 45

Figure 22: Total cost per query in seconds vs. the ratio

of updates to the total number of operations P for

10,000 records 45

Figure 23: Total cost per query in seconds vs. the

selectivity of the view predicate fv on 7500

records 47

Figure 24: Total cost per query in seconds vs. the

selectivity of the view predicate fv for 10,000. 47

viii

Figure 25: Total cost per query in seconds vs. the

selectivity of the query in seconds on the view fq for

7500 records 48

Figure 26: Total cost per query in seconds vs. the

selectivity of the query on the view fq for 10,000

records 49

Figure 27: Total cost per query in seconds vs. the number

of tuples modified by each update 1 for 7500

records 50

Figure 28: Total cost per query in seconds vs. the number

of tuples modified by each update 1 for 10,000

records 50

ix

I. INTRODUCTION

A. BACKGROUND

A database is a computer based record keeping system that

contains information used .o support an organization's

tactical (short range) and strategic (long range) goals. For

example, a database for a sales organization could contain

customer, employee, sales and inventory data.

Several data models are available to organize the

information within the database so that it can be utilized in

an efficient manner. One of the most common data models is the

relational model. This method organizes data in terms of

tables (relations), rows (tuples) and columns (attributes).

Tables can be classified as either base tables or views.

A base table is a table that physically exists in its own

right. A view maybe thought of as a virtual table, in as much,

that it does not (normally) exist within its own right but is

instead derived from one or more underlying base tables

[Ref. 1]. The view is stored as a definition in the data

dictionary and is combined with a user's query to retrieve the

requested data from the base tables.

1

The use cf views allows for the structuring and limiting of

the information retrieved by a given query. This feature

allows the user to receive data that is relevant to the

application and limits unauthorized user access to other

critical data.

Recently several proposals have considered storing some

form of the processed view to eliminate the need to evaluate

the view definition from scratch every time it is queried. The

first approach, known as full materialization, stores the

fully processed view as a physical table. This approach has

the advantage of increasing the efficiency of the queries on

the view , but incurs an additional expense of maintaining the

materialized view. To overcome this problem, a second

approach, called semi-materialization, was proposed whereby a

partially processed rather than a fully materialized view is

stored. This approach redundantly stores data that represents

selections and projections of individual relations, thus

allowing efficient evaluation of the view definition while

being easy to maintain.

View performance prov.essing is directly related to the

performance of real time applications such as surveillance

systems which support military operations. These systems

receive periodic environmental updates from various sensors

which are used to evaluate a view. Any delay processing the

sensor data, which is typically time sensitive, into usable

information could render the information late and unusable.

2

Faster view processing used in conjunction with real time

systems will significantly improve the response time of these

systems.

B. OBJECTIVE

The objective of this thesis is to compare empirically the

performance of three view processing strategies: query

modification, semi-materialization and full materialization.

The research attempts to verify the analytical results which

have indicated that, in general, the semi-materialization

strategy is the best method for processing general expression

views [Ref. 2]. To accomplish this goal, this research

develops a Data Generation Program to produce test databases

according to user specifications. The test databases are then

used to compare the performance of three view processing

strategies for two view expressions and under different

parameter settings, using a simulation program that was

developed by Lt Jesse South [Ref. 3]. Performance

results were then collected, analyzed and plotted for

presentation in this thesis.

3

C. SCOPE AND METHODOLOGY

This thesis accomplishes the following:

1. Develops a generic database generating program using

ANSI C to generate test databases according to user

specifications.

2. Compares the performance of three view materialization

strategies for select-project-join expressions with the

database stored in Random Access Memory (RAM) and hard

disk.

3. Tests the three view strategies using general

expressions with the database storea on RAM and on

hard disk under different parameter settings, collecting

the results and comparing them with analytical results.

4. Uses the results to draw conclusions and determine the

conditions under which each strategy performs the best.

D. ORGANIZATION OF STUDY

This thesis is organized as follows. Chapter II overviews

the three view processing strategies. Chapter III provides a

detailed description of the Data Generation Program. Chapter

IV presents the performance results of the empirical study and

compares them to the results of the analytical study. Chapter

V presents conclusions based on the study and suggests areas

for future research.

4

II. VIEW MATERIALIZATION STRATEGIES

The purpose of this chapter is to provide a general

overview of the three view materialization strategies - query

modification, semi-materialization and full

materialization.

A. QUERY MODIFICATION

The conventional method for view processing for queries is

query modification. This method stores a view definition in

the data dictionary. This view definition is retrieved from

the data dictionary when a query is issued on the view and

combined with the user query into an equivalent query on the

underlying base tables. This query is subsequently processed,

and the results returned to its user. Consider the following

database schema:

EMP(E#,ENAME,ADDRESS,SALARY, TITLE)

POS(E#,S#,LEVEL)

and the corresponding view definition COMBATSTAFF:

He. ENW, e. AM , e. SALARY
(up.LEEL>3 (PPOS)

Now when a query is issued against COMBATSTAFF:

1c. NUM, c. ENAMR(oc.SALARY>30,OOO (COMBATSTAPF))

5

The view mechanism translates the query into the equivalent

query on the base relations:

He.ENM, e.EMIAME
(ae. salary>30,oooAp.LEVEL>3 (FAP-4POS))

The resulting query is optimized to determine the best access

path and then executed.

B. FULL MATERIALIZATION

This method creates an actual table based on the view

definition. The resulting table is used to perform user

queries, thus avoiding the cost of repeatedly retrieving a

view definition and creating equivalent queries on the base

relations. This method works quite well for processing

queries, but is costly when the frequency of update is high,

since the full materialized view must be maintained.

Updates are defined as a transaction which performs a

sequence of tuple insertions, tuple deletions, and tuple

modifications on a relation(s). Suppose that a set of tuples

A is added to a relation and a set of tuples D is deleted from

the same relation. The tuple sets A and D represent the net

change made to that relation. In that case, a tuple which is

inserted and deleted in the same transaction would not appear

in either tuple set A or D.

6

Using this method, the net results of an update

transaction could be used as a basis for a differential

algorithm to update the materialized view.

In fact this method works quite well using select-project-

join expressions because selections and projections can be

performed over unions. Using the view definition in the

previous section and limiting the updates to the POS relation

for simplicity, the view expression becomes:

COMBATSTAFFI-COMBATSTAFF-Ile. M , e. EMAME , e. SALARY
(p. LEVEL>3 (Dm POS))

e.ENHUM, e.&EANN, e. SALARY(p . LEVEL>3 (AtmPOS))

The above expression shows that the fully materialized view

can be maintained by computing the last two expressions and

inserting them into or deleting them from the materialized

view COMBATSTAFF.

Unfortunately a similar expression can not be derived if

a general expression is used in the view definition. At

present no efficient differential algorithm exists for

performing incremental updates for general expressions. This

fact necessitates that a complete re-evaluation of the view

expression be accomplished after each update to the base

relations. The cost of re-evaluating a fully materialized view

can be prohibitive as the frequency of updates for the base

relations increase, which is the chief problem associated with

this method.

7

C. SEMI-MATERIALIZATION

This method stores redundant subsets of carefully chosen

data from individual base tables. These redundant subsets are

stored as actual tables and represent an intermediate state of

computing the view. Each subset is a projection and selection

of the base table(s) thus making the construction of the view

less costly than using the base relations.

The redundant data is clustered on the join attribute(s)

which allows for the efficient construction of the view.

Updates to the base relations are screened to determine if the

update affects the redundant tables. If it does, it is

inserted into or deleted from the appropriate redundant

tables.

The following redundant subsets would be stored to support

this technique:

EZ4P'4e. EUM, e. ENAME, e. SALARY(EMP)
POs'4fp. ENW(op. LEVEL> 3 (PO3)

This view is combined with a user query to form an equivalent

query on the redundant relations:

[Ic. EN1, c. ENAME, C. SALARY(IP4POSI)

8

When queried the following equivalent view is created using

the redundant tables and the view definition:

Ue'.EM, el.ENAM(e.SALARY>30,OOO(EP'"POS))

This method becomes more complicated as additional

insertions and deletions occur. Since more than one base

relation may have been the source of the tuples used in the

materialized view, it becomes increasing difficult to

determine, when or if a record should be removed from the

view.

To alleviate this problem each materialized view must keep

a duplicate count of the number of tuples contributed, by each

redundant subset, to the tuples in the materialized view when

the subsets are joined. The count should be incremented or

decremented depending on the transaction until the count

becomes zero.

9

III. DATA GENERATION PROGRAM

The purpose of this chapter is to describe the Data

Generation program. According to user specifications the

program generates text files that are used subsequently to

build the test database. As shown in Figure 1, the program

reads control information from a text file created by a user

or generated by the simulation program and generates the

specified text files. The program allows the user to control

the number of records (cardinality of the relation), the data

type (ALPHA, NUMERIC or ALPHANUMERIC characters), the size of

each field and the number of fields generated for each record.

TEXT FILE

NII
Clat gen pgm

o>utput file

Figure 1: Data generation program data flow
overview.

10

The process to generate the data is hidden from the user

by using a fixed format control file as the user interface to

the program.

The program is written in ANSI C to increase portability

of the source code and to minimize the changes necessary to

transfer the program to a mini or mainframe environment. The

maximum size of the text file generated by the program is

limited only by the secondary storage available on the

platform in use.

A. GENERAL DESCRIPTION

The Data Generation program receives control data from the

text file "DATA IN". The information in the control data file

is effectively divided into two sections. The first section

determines the number of records, fields per record and the

name of the output file. The second section defines each field

within the record by type of information for the field (Field

Type:Alpha, Numeric or Alphanumeric): the number of characters

for each attribute (Field Width): the upper and lower bounds

for any arrays and the incremental value used for counters.

Data Generation program reads the data into a set of linked

lists which are passed to the control modules by the main

module to create each record.

11

B. REQUIREMENTS

The requirement for the Data Generation program was based

on a user request that a new generic data generating program

be written in the C programming language to replace the

previous database generating program.

SAMPLE INPUT FILE

,300 5 EMPDATA A 5 R D 1 T

A. RECORD STRUCTURE B. FIELD STRUCTURE

1. NUMBER OF 1. FIELD TYPE 4. ARRAY
RECORA.- ALPHA LOWEN: NUMERIC BOUND

2. NUMBER OF N:. NPBOA-
FIELDS NUMERIC

3. T FILE 2. FIELD WIDTH 5. INCREMENT
NAME

SFIELD INFO S. ARRAY
S: JENTIAI UPPER
B: ARRAY BOUND
R: RANDOM
D. DEFAULT

Figure 2: Data generation program parameters and parameter
definitions.

12

The program accepts the following inputs and generates a

text file used to create test databases:

1. Number of text files required.

2. Number of records per text file.

3. Name of the text file.

4. Number of fields per record.

5. Size of each field.

6. Type of information in each field.

7. Number of distinct values in each field.

8. Upper and lower limits for the fields.

9. Input reference for randomly generated characters.

To simplify the performance analysis several

assumptions were made about the data generated for the test

database. The first assumption was that the values for each

field in the column were uniformly distributed over the range

of values in the column. The second assumption considered each

value in a given column to be independent of the values in the

other columns.

C. NOTES ON PROGRAM DESIGN

The requirement for maximum program flexibility dictated

a "layered" design approach be used, creating individual

primitive modules to produce the varied types of output data

requested by the user.

13

To keep the coupling between the modules as loose as

possible, the use of global variables is minimized and when

feasible, only a single record structure is passed between

the called and calling modules.

INPUTS
MAIN MODULE 7. FELD STRUCTURE

PASSES COTO UNK LIS'r)
A RUCORDE & INCREMENT ANDSTRUCURE OUNDS

U:CALPHA ALPHA -
CA I CA' I NUM

NPRNTS

PRIMIT VE MODULES . PRIMITIVE MODULES 1.I
GENERATE AND PRNT GENERATE AND PRNT

OUTPUT TO 0U "1T FILES OUTPUT TO TEXT RLES

Figure 3: Data generation program control module
overview.

Each primitive module prints its output directly to the

output text file with the exception of the

generate-numeric-array module which returns its numeric output

to the random generator module for conversion to alpha

characters, if required.

14

This method was chosen after trial and error as the best

method for facilitating the tracing of data and control flow

through the modules.

The rand() C library function was used to generate random

data. Two C language record structures were used to establish

the command language between the data generation program, the

control file and the view materialization simulation program.

D. PROGRAM MODULE OVERVIEW

A brief description of each module is provided to clarify

the control and data flows that are described in Section E.

1. Main Module

The main module opens and closes the input-output

files, loads the control data into the record structures and

directs the flow of the control data to the applicable modules

for data generation.

2. Time Hack Module

The time hack module uses the syste clock to compute

the base reference for the generation of random alpha and

numeric output values.

3. Type_Numeric Module

The type_numeric module is called by the main module

to generate a numeric string, or call the sequential counter,

randomgenerator or the boundedsequentialarray modules.

15

4. Type-Alpha Module

The type_alpha module is one of three process control

modules used to determine the type of characters in a field.

The module receives its input in the form of a record

structure passed from the main module to generate a string of

elpha characters, or to call the random_generator or the

boundedsequentialarray modules.

5. Type_Alphanumeric Module

The type_alphanumeric module is the last process

control module and generates a single varia.3le length string

of alpha and numeric characters when called by the main

module.

6. Bounded_SequentialArray Module

The bounded_sequential_array module, which is called

by either the typealpha or typenumeric modules, receives

three numeric values from the calling module. The values

determine the array lower bound, the number of array elements

and the incremental value of each element. The rand() function

is used to generate a random index number to select the array

element value that is printed in the output file.

16

7. RandomGenerator Module

The randomgenerator module is called in the same

manner as the bounded_sequentialarray module. The module

determines if a character or numeric value is required, calls

the generatenumeric_array module to produce the required

value and prints the value or character in the output file.

8. RandomLong_Array Module

The randomlongarray module is called by the

typenumeric module to produce a random numeric output

employing the same rand() function that was used in the

bounded_sequential-array module. The module computes the array

size and determines if the number of array elements exceeds a

preset limit.

The module will compute the output value using the

upper bound value and the rand() function to conserve main

memory rather than allocating space for the array if the

preset limit is exceeded. This method was used to prevent the

program from using memory unnecessarily.

9. Counter Module

The counter module is called by the typenumeric

module and uses global values to generate up to three

independent sequential counters.

17

10. GenerateNumeric_Array Module

The generatenumeric_array module is called by the

random generator module to produce a second independent

bounded array similar to the boundedsequential array module

except the random numeric output from the module is returned

to the calling module for possible conversion to an alpha

character.

11. Print Modules

The print modules are all used to send debugging data

to a text file called "output.txt" that is controlled by a

toggle called "TROUBLESHOOTING".

E. DETAILED DATA AND CONTROL FLOW

The Data Generation Program is called by a batch file

which reads the control file "DATAIN". The input data is

formatted to conform to the two record structures declared in

the definition section of the program.

Once the input data is loaded into the program, the

control file is closed and the output file is opened. The

output file name is part of the control file data. Each record

structure is read and control is routed to the appropriate

control module based on field type (ALPHA "A", NUMERIC "N"

and ALPHANUMERIC "0").

18

The typenumeric module will be used to trace the first

data flow through the modules. the second data flow be traced

using the type_alpha module and the last data flow will use

typealphanumeric module.

"N" is the field type read by the main module in the

attribute record structure. Control and the attribute record

structure is passed to the type_numeric module by the main

module. The attribute record structure is read by the module

to determine the field information (BOUNDED SEQUENTIAL ARRAY

"B", RANDOM GENERATOR "R", COUNTER "S", RANDOM LONG ARRAY "X"

or DEFAULT "D").

The field information type read by the module is "B" and

the bounded_sequentialarray module is called. The

typenumeric module converts the lower and upper bound

character strings to numeric values which are passed to the

bounded_sequentialarray module along with the incremental

data. The module uses the input data to determine array size,

the lower bound and increment.

Memory is allocated and the array is filled. The rand()

function and the array size are used to compute an random

index number to select the array element value to be printed

in the applicable field in the output field.

19

Control is returned to the main module and the next

attribute record structure is read. "A" is the next field type

read by the main module: control and the attribute record

structure is passed to the type-alpha module.

The type_alpha module reads the attribute record

structure. "R" is the field information read by the module.

The randomgenerator module is called, the lower bound

character and upper bound character strings are read by the

typealpha module. The character strings are converted to

numeric values and passed along with the incremental data to

the random generator module.

The random-generator module determines if the integer

values represent alpha characters or numeric values. In this

case, the values represent the upper case letters "A"(lower

bound), "R" (upper bound), and the increment value of 1. The

random_generator computes the array size, and passes the

values to the generatenumeric_array module to generate the

array.

The generatenumericarray module allocates and fills the

array. The rand() function is used to select an array value

which is returned to the random-generator module. The value is

converted to an alpha character in the randomgenerator module

and printed in the applicable field in the output file.

20

Control is returned to the main module and the next

attribute record is read. "0" is the next field type read by

the main module: control and the attribute record structure is

passed to the typealphanumeric module.

Unlike the other control modules the typealphanumeric

module does not call other modules. The attribute record

structure is read to determine the total number of alpha and

numeric characters required. Total field width is the

aggregate of the two character strings.

The characters are generated sequentially "A - Z" for the

alpha string and "0 - 9" for the numeric string. The

characters are printed to the output file one at a time until

the field is completed.

The process for the other field information types is

similar for both the typealpha and typenumeric modules.

ERROR handling is limited to verification of the input data

and the opening of the required input and output files.

F. TESTING

Testing was conducted on each module when it was created

or updated. Small text files which simulated the input data

for the particular module being tested was modified to test

each module over a wide range of values. The entire program

was tested using a variety of control files to create text

files from 50 to over 60,000 records with at least 10

attribute fields per record.

21

IV. PERFORMANCE ANALYSIS

The purpose of this chapter is to describe and report the

results of the empirical study conducted on the three view

materialization strategies -- query modification, full

materialization and semi-materialization -- using select-

project-join (Model 1) and general expressions (Model 2).

Performance testing was conducted on databases stored in

Random Access Memory (RAM) and on a hard disk using a computer

with an INTEL 80386SX processor running at 20 MHz. The

simulation program is written in ANSI C with embedded SQL

commands to access the INGRES relational database system.

A. SUMMARY OF THE RESULTS FOR THE ANALYTICAL MODEL

Review of the results for the analytical model indicate

that view processing strategies are most sensitive to the

frequency of updates (P), the selectivity of the view

predicate (fv), the selectivity of the query predicate (fq)

and number of tuples (1) [Ref. 2]. For select-project-join

expressions, and except for high values of P, both full and

semi-materialization performed better than query modification.

22

Higher values of P, fv, 1 or lower values of fq favor semi-

materialization over full materialization. At lower values of

P, fv, and 1 full materialization is slightly better than

semi-materialization as the update costs tend to be low.

For general expressions semi-materialization performed

better for all parameter values except for very low values of

P. The absence of an efficient differential algorithm for

performing incremental updates makes the use of general

expression an unattractive alternative.

B. EXPERIMENTAL SETUP

The parameter definitions, parameter default values,

access paths for the relations, query and view definitions and

the profiles of the database relations which were used for

the experiment are shown in Figures 4 through 8, respectively.

N Crfliy* mof N RdoI

K Mm& d u *lncnm ms mI b om W

I TOWml NA*ofk Of by SUdm hS udl cWr

q NMi*Wrt*Wm k9dsd

P l / tonk bou*l*

fv d ,j l/d qW O'lmw iNImm bc d Wp* IMW* b

Figure 4: View materialization parameter
definitions.

23

N 6000 k 100

so q 100

0.6 fV 0.1

0.1

Figure 5: Default values for parameters.

Relaion(s) Acces paM

EMP Clushmd "dm n join laid *p)wm

P Cumfard W4*x a~jn

P08' Chuesed Index an WAI

Figure 6: Access paths for relations.

The parameters that were considered for the sensitivity

analysis include the following for each model tested:

1. The fraction of updates to the total number of

operations (P). This parameter is controlled by varying the

number of update transactions on the base relations (k) and

the number of times the view is queried (q).

24

2. The selectivity of the view predicate (fv) or the

fraction of tuples retrieved in the view with regard to the

control relation POS. This fraction is controlled by varying

the value v threshold (view-cut) - that is, the predicates in

the view definition.

3. The selectivity of the query predicate (fq) or the

fraction of tuples retrieved by the query on the view. The

fraction (fq) is controlled by varying the value qthreshold

(query_cut) - that is, the predicate in the query.

4. The number of tuples modified by each transaction (1).

This parameter is controlled by varying the number of tuples

per update generated by the data generation program.

5. The number of records in the base relation(s)

(cardinality of the relation).

Performance data was collected for view definitions using

select-project-join and general expression predicates with the

database stored in RAM and on hard disk.

The database and the data generation program, view

materialization simulation program and various Ingres program

files were placed in separate sub-directories on the hard disk

or in two similar RAM drives (4MB for database and 1.8MB for

the other files) to determine if eliminating the hard disk

access time (28ms average) would significantly improve the

performance of the view processing strategies.

25

EXPRESSON

CREATE VIEW FULLMVEWVIEW 1:
SELECT E-NUM. ENAME. SALARY. KEYNO
WHERE e.ENUM - p.ENUM AND
p.LEVEL ,- VIEWCUT

CREATE VIEW FULLVIEW
SELECT EJMUM, ENAME, SALARY, KEYNO

VIEW a: WHERE ECSTS
(SELECT *

WHERE e.EJNUM - p.E._NUM
p.o.KEYNO - R.J.KEYNO

AND pjL.EL '- VEWCUT)

QUERY SELECT ENUM. ENAME. KEYNO
WHERE SALARY ,- QERYCT "

VilW 1: VMWk
ulmbm

Figure 7: View definitions and query on the views.

Two types of operations were conducted on the test

database, a series of update transactions on the base

relations which modified a varying number of tuples per update

and queries issued against views.

CARD (P08) - 6000

M W LEVA4l. KW AOCINFO

VAL is0 3 10 am OG

man 12 a 11 M cr

C^RD (EMP) - 5O

of C 4&4"ME ADMMESS SALARY TITLE JOUCE

VAL 090 Ms m m i o s

12 a c C ' 14 G"o cer

Figure 8: Profile of database relations.

26

The average elapsed time per query for all updates and

queries is used to compute the performance of each strategy.

C. PERFORMANCE ANALYSIS

This section discusses the performance of the three view

processing strategies for view definitions which used select-

project-join and general expression predicates. These

strategies were applied to the test database(s) produced using

the EMP, POS and SKILL text files generated by the data

generation program. The reporting method will consist of

reviewing the results for each parameter used in the

sensitivity analysis of the two models.

1. Model 1 : Select-Project-Join

MODEL 1 uses the following view definition with a

select-project-join predicate for the three view processing

strategies:

le. ENUM, e.ENAME, e.SALARY(p.LEVELviewcut(P"POS))

a. Results for Database 1n RAN

In this section, the results of the sensitivity

analysis for Model 1 for the database in RAM is presented.

Figures 9 through 12 show the results for model 1 for the four

different parameter values when using the ram disk.

In general, the trends computed for the analytical

model were supported by the empirical results for the runs

with the database stored in RAM.

27

The sensitivity analysis for the probability of

update parameter shows semi-materialization performs best for

values of P greater than 0.5 with the database in RAM.

Full materialization was the clear winner for values of P less

than 0.5.

This tradeoff occurs because for values greater

than 0.5 the cost of processing queries for full

materialization averages .35 seconds while the cost to perform

updates averaged .7 seconds. The cost per query for semi-

materialization averaged .8 seconds but the cost for updates

averaged to only .2 seconds.

As the number of updates increased the update cost

for semi-materialization was quartered while the cost for full

materialization doubled.

The average cost for query modification was 4.3

second per transaction. Query modification exhibited the same

trend as the analytical model.

28

7

6./

4-

2* Qu y Maiflea n

1 0 SemI M fitzu1ln
> FuO IMvllzatb

0 :1 0:2 03 04 0:6 OA 0:7 0A 0o9
Rddupdim (P13)

Figure 9: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P.

For the selectivity of view parameter, the

performance of the full and semi-materialization strategies

were virtually identical for values of fv less than 0.3. The

performance of semi-materialization improved over the

performance of full materialization as the value of fv

increased.

The average cost per update was .78 seconds and

cost per query was .63 seconds for full materialization for

values of fv less than 0.3. As expected, the cost for

performing updates increased significantly as the value of fv

increased.

29

40-

is

Log
lo)K Ouery mdko

0 Rdl MRlStl 91

6 0.1 0.2 C~3 0:4 0 A 0.7 0:0C
8ubMy*wV~WV7)

Figure 10: Total cost per query in seconds vs. the
selectivity of the view predicate fv.

The average cost of updates for semi-

materialization was .76 seconds while the cost for queries

averaged 3.26 seconds over the entire range of values for fv.

The cost for query modification increased as the

size of the view increased over the range of fv as expected.

The empirical results for query modification were virtually

identical to the analytical model trends.

Full materialization provided the best performance

for all values of fq for the strategies with the database in

RAM.

30

The average cost per update for full

materialization was .7 seconds while the cost per query

averaged 2.2 seconds.

10

*K Ouuy MGMdifun

o 38mi MatWhllel

o Ful MdwhIIdicn

0 i0:1 0:2 0 3 0 05 0:4 0:7 0.59

8shMvIy € 1 quse (Fm

Figure 11: Total cost per query in seconds vs. the
selectivity of the query on the view fq.

The average cost per update for semi-

materialization was .25 seconds but the cost per query

averaged 3.7 seconds. Semi-materialization conformed to the

trends indicated in the analytical results for fq.

The average cost per transaction for query

modification was 6.2 seconds which conformed to the

performance noted for the analytical model.

31

There was very little difference between the

performances of semi- or full materialization over the entire

range of values of 1 - number of tuples per update for the

database in RAM.

Full materialization performed slightly better for

values of 1 less than 40. Semi-materialization performed best

for values of 1 from 50 to 80 and greater than 90.

The average cost per update for semi-

materialization was .32 seconds while the average cost per

query was .79 seconds for all values of 1. The average cost

per query for full materialization was .36 seconds and average

cost per update was .87 seconds over the same range of 1

values.

5

4

3.

2

o fl MOKse1fd

*~~ ~~ MI I0~7 ~o o

Figure 12: Total cost per query in seconds vs. the
number of tuples modified by each update 1.

32

Full materialization's performance for the 1 parameter far

exceeded the expectations indicated by the analytical model.

Query modification's performance on the analytical model

indicated a slight improvement for higher values of 1 which

was not supported by the empirical data.

b. Results for Database on Hard Disk

In this section the results of the sensitivity

analysis for Model 1 on hard disk are presented for comparison

to the results for the three strategies with the database in

RAM.

For the probability of update parameter, the

transition to semi-materialization's performance exceeding

full materialization occurs at 0.34. This indicates, as

expected, that disk access time when added to the cost of

performing updates has an significant impact on the

performance of full materialization.

Semi-materialization provides the best performance

for values of P greater than 0.34. The figure shows a less

steep increase for values of P greater than 0.7 than the

results with the database in RAM. Note, however that the

processing cost in RAM is less than 50% of the similar cost on

the hard disk.

33

25-

)K Quwy M@fetlon
0 Sgml Mdiift tn

0 Ful Msddmido

0.1 0:2 C:3 0:4 0:5 : 0:7 0:0

Figure 13: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P.

For the selectivity on the view parameter, semi-

materialization performed best for all values of fv. The

difference in the performance appears to be due to the

additional cost added for accessing the disk to update the

base relation plus the additional disk accesses required to

update the view.

In general the trends are identical to the trends

exhibited by the analytical and RAM models.

34

50 0 l M i ze m

3deo dl to VWMizV43)

Figure 14: Total cost per query in seconds vs. the
selectivity of the view predicate fv.

Semi -materialization was the best performer for

values of fq that were less than 0.4. Full materialization

performance was better for values greater than 0.4. The

performance for both semi- and full materialization was

virtually identical for values of fq between 0.2 and 0.4.

The trends for the three strategies conform to the

results shown for the analytical model.

35

0 rOd MaUftzmion

01 0 Ful Msdimto

Figure 15: Total cost per query in seconds vs. the
selectivity of the query on the view fq.

Semi-materialization was the clear winner for all

values of 1. Full materialization 's performance improved for

values of 1 greater than 80 but did not out perform semi-

materialization. Query modification's performance conformed to

both the analytical and RAM models. The results for both

semi- and full materialization exceeded the results shown for

the analytical model.

36

i

noa .mawksti

C> MU MWuiI2uZmn

61b 2b 4b 40 4) i0 7b 60) OiM
W od %zpbg We updsls (nJPS)

Figure 16: Total cost per query in seconds vs. the
number of tuples modified by each update I.

c. Discussion of the results for Model 1

In general the empirical data supported the

conclusions presented in the analytical review of the view

materialization strategies [Ref. 4].

Semi-materialization' s performance was superior

for higher values of P, lower values of 1, fv and all values

of fq for the database on the hard disk.' Semi-

materialization performed best with the database in RAM for

values of P greater than 0.5, fv greater than 0.3 and for 1

values between 50 to 80 and greater than 90.

1 Semi-materialization was outperformed by full
materialization for only the first value of fv while using the
RAM disk drive.

37

This was due to the low cost per update for semi-

materialization when compared to the other strategies. The

cost advantages of performing queries and updates on the

redundant subsets is due primarily to the fact that any

transactions performed using semi-materialization are on

smaller table(s) than the base relations.

Full materialization performed best for lower

values of P, I and for all values of fq for the database on

RAM. As expected full materialization performed best when the

primary transaction was a query. Surprisingly, full

materialization overall performance on RAM was quite good even

for the parameters for which it was not the best performer.

For example, in Figure 12, full materialization's performance

was nearly identical to semi-materialization over the entire

range of values for 1. Similarly, full materialization's

performance was not significantly worst than semi-

materialization for values of fv as shown in Figure 10. Full

materialization performed best with the database on hard disk

for P less than 0.34 and for fq values greater than 0.4.

Query modification outperformed full

materialization for values of P greater than 0.82 for RAM and

0.84 on the hard disk. This was due to the very high cost per

update for full materialization as discussed previously.

38

2. Model 2 : General Expressions

MODEL 2 uses the following general expression view

definition expressed in relational calculus:

e. MN, e.ENAME, e. SALARYwhere.9
(e. ENUM-p. ENUfAp. LLBVLzviewcut (E4POS))

a. Results for Database In RAN

The results for the database in RAM are displayed

in Figures 17 through 20. The trends exhibited here are

noteworthy since the performances for all the strategies

exceed the results obtained from the earlier experimental data

but tended to conform to the analytical model [Ref. 4].

The results for the probability of updates

parameter are displayed in Figure 17 and indicate semi-

materialization outperformed query modification for all values

of P. It also outperformed full materialization for values of

P greater than 0.1.

39

40-

50-

)KQuwy Medtf

00 PU Mnl ~efo

40

0o M2 0CA 04 CA 04 7 OJ U_.I

R% ddse1 M2)

Figure 17: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P.

Semi-materialization's average cost per update was

0.22 seconds while its cost per query averaged 5.73 seconds

over the entire range of P values. Full materialization

averaged a cost per query of 0.31 seconds but its advantage

was offset with an initial update cost of 62.89 seconds. Query

modification's cost per transaction was 33.65 seconds.

Semi-materializatioi& was the best performer for

all values of fv, which coincided with the trend for the

analytical model. The simulation results for query

modification and full materialization were better than the

results for analytical model for all values of fv.

40

Semi-materialization's cost per update averaged

0.68 seconds and its average cost per query was 21.3 seconds

over the entire range of fv values. Full materialization

averaged 1.5 seconds per query and its cost per update

averaged 270 seconds. Query modification's cost per

transaction averaged to 51.7 seconds for fv values.

480-

4W

3W

2W_

1W_

Figure 18: Total cost per query in seconds vs. the
selectivity of the view predicate fv.

The analysis for the selectivity of the query

parameter shows that semi-materialization was the most cost

effective strategy for processing queries for general

expressions.

41

• • .,. m n -~~~ QanuNmyn Mam mssnT ----

The analytical and empirical results for query

modification were nearly identical for the entire range of fq

values. Full materialization proved to be the worst performer

of the strategies, as displayed in Figure 19.

Semi-materialization cost per update for fq

averaged to 0.23 seconds while its average cost per query was

20.7 seconds. The average cost per update for full

materialization was 63.5 seconds and its cost per query was

1.3 seconds. Query modification's cost per transaction was

46.1 seconds.

20 Lerwid

10- 0 saw Mi bn

0 Ad MaWumlui

0 40.1 0:2 da 0:4 0 ": 0:7 0 0.0 1

Figure 19: Total cost per query in seconds vs. the
selectivity of the query on the view fq.

42

Figure 20 shows that semi-materialization

outperformed full materialization and query modification for

all values of 1.

70

20

j60-

4o4

20- u y e il d

104O umy sds

10- 0 sow MooftlhMdm
* Fti Mri~fn

Nwnbw of sow per aWdo AU)

Figure 20: Total cost per query in seconds vs. the
number of tuples modified by each update I.

Semi-materialization's average cost per update was

0.28 seconds and its cost per query was 5.7 seconds for all

values of 1. Full materialization's cost averaged to 0.32

seconds per query and 63.2 seconds per update. Query

modification's transaction cost averaged 33.7 seconds.

43

The slight increase in performance cost over the

entire range of 1 anticipated by the analytical model for

semi-materialization as the number of tuples per update

increased was not supported by the simulation results.

Query modification and full materialization conformed to the

results plotted for the analytical model (Ref. 4].

b. Results for Database on Hard Disk

In this section the results of the sensitivity

analysis for Model 2 on hard disk are presented. Figures 21

through 28 show the results for model 2 for the five different

parameter values when using the hard disk.

Unlike the experiment conducted in RAM for the

three view processing strategies, the cardinality of the POS

relation will be varied from 7500 to 10,000. The methodology

used to conducting the sensitivity analysis for the four other

parameter values (P, fv, fq and 1) was exactly the same as the

methodology used for the experiment conducted in RAM.

44

The results for the probability of updates

parameter is displayed in Figures 21 and 22 shows that semi-

materialization out performed query modification over the

entire range of P values. Its performance was better than full

materialization for values of P greater than 0.1.

aI
2-

law.p Mtrll~sk

)W QuWY kfdHE

NO- *~ Pug MwtaIwon

0 .01 0.2 0.8 @4 0. .6 07 0.8 C I.Rme u mme 7I6

Figure 21: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P for 7500 records.

IM
low Qy MUm

sawei klsedika8.

01 0.8 0.8 4 0.4 0.6 0:7 0.8 0.

Figure 22: Total cost per query in seconds vs. the
ratio of updates to the total number of operations
P for 10,000 records.

45

The reason for semi-materialization performance is

its low cost per update which offset its average cost per

query. For an cardinality of 7500 records, semi-

materialization's average cost per update was 1.55 seconds and

19.82 seconds per query. Its average per update for an 10,000

record cardinality was 3.41 seconds with a cost per query of

21.21 seconds.

Full materialization performed best for a P value

of 0.1 or less for both cardinality values but the extremely

high cost of its first update (250 seconds for 7500: 417

seconds for 10,000) quickly overcame its cost advantage for

processing queries.

Query modification outperformed full

materialization for P greater than 0.2 because of full

materialization high cost per update.

Semi-materialization outperformed both query

modification and full materialization over the entire range of

fv values. The cost per update for semi-materialization with

a cardinality of 7500 was 3.7 seconds and its cost per query

was 51.2 seconds for all values of fv. Semi-materialization's

cost per update for a cardinality of 10,000 records was 7.1

seconds while its cost per query was 59.0 seconds. Query

modification cost per transaction averaged 102 seconds for

7500 records and 180 seconds for 10,000 records.

46

Full materialization cost per update increased at a rate of

150% for 7500 records and doubled for 10,000 records as the

size of the view increased.

0

21-
60 IM. Md.

IWO-

f law MdifllWO OtlM Mwvmdw~~n

ILI 062U 0 :41 CO C.7 C4 WA.

Figure 23: Total cost per query in seconds vs. the
selectivity of the view predicate v on 7500
records.

am. ~0 OWN Mdmwel

WdMof f#W VeWW 0II)

Figure 24: Total cost per query in seconds vs. the
selectivity of the view predicate fv for 10,000.

47

As shown in Figures 25 and 26, semi-

materialization outperformed query modification and full

materialization for all values of fq.

The average cost per update for semi-

materialization with a cardinality of 7500 was 1.5 seconds and

its cost per query was 64.5 seconds.

Semi-materialization's averaged costs for a

cardinality of 10,000 was 2.8 seconds for updates and 73.0

seconds for queries.

I 00* 0: OA WO "- lA

Figure 25: Total cost per query in seconds vs. the

selectivity of the query in seconds on the view fq
for 7500 records.

48

160 LegeII

61 0 M e M M U a n

ge~mc6@Ww of 2W auwv MPO1O
Figure 26: Total cost per query in seconds vs. the
selectivity of the query on the view fq for 10,000
records.

The averaged costs for full materialization for

7500 records was 2.5 seconds per query and 256 seconds per

update.Query modification's costs averaged 116.0 Eiconds for

7500 records and 150.6 for 10,000 records.

49

As expected semi-materialization was the clear

winner over both query modification and full materialization

over the entire range of I values.

jigur L7eoalcsgerec nsc nd s h

&-.

WECArey Modm~en

ol 0 PU UMe

1 . : . = = C Pul Mermemgn

a li am 05 0 5 is A5 b 140

NUeMW WOW mp UpdM U 2)

Figure 27: Total cost per query in seconds vs. the
number of tuples modified by each update I for 7500
records.

405

110

100- *OM

0i ii os b di b 10 b 100iR
Nwmhbe of %*bie m upds" (%M

Figure 28: Total cost per query in seconds vs. the
number of tuples modified by each update I1 for 10,
000 records.

50

Semi-materialization's performance cost averaged

2.1 seconds per update and 18.8 seconds per query with a

cardinality of 7500 for all values of 1.

Similarly its averaged costs for 10,000 records

were 3.7 seconds per update and 20.2 seconds per query. Full

materialization's costs averaged 0.71 per query and 253

seconds per update with a cardinality of 7500. Its average

costs were 0.72 seconds per query and 421 seconds per update

for 10,000 records. Query modification had an average cost of

68.7 seconds per transaction for 7500 records and 103.2

seconds for 10,000 records.

The additional cost associated with using a hard

disk drive and increasing the cardinality had an impact on the

performance experienced for both query modification and full

materialization.

The cost for processing queries using query

modification on the hard disk increased three fold over the

cost of processing the query in RAM.

The cost of processing updates using full

materialization increased by 700% over the same cost for

updates in RAM but the cost for query processing only doubled.

51

The costs for semi-materialization also increased

by a factor of ten for updates and quadrupled for query

processing. The increase in processing costs for semi-

materialization was offset by the use of the redundant subsets

of the base relation which allowed for a more efficient

construction of the materialized view.

c. Discussion of Results for Model 2

Semi-materialization performed better with the

database in RAM and on hard disk for the entire range of

values of cardinality than both query modification and full

materialization for all parameters except for a value of P

less than 0.1. Full materialization performed better for P

less than 0.1 because its average cost per query was only .42

seconds while semi-materialization's cost averaged 15.4

seconds.

For values of P greater than 0.1 the cost for

performing a single update for full materialization rose to

62.89 seconds for 5000 records in RAM, 250 seconds for 7500

recoros on hard disk,and A17 seconds for 10,000 records on

hard disk which offset any advantage offered by full

materialization superior performance for query processing.

52

This dramatic cost increase for update processing for full

materialization using general expression predicates is due the

lack of an efficient differential update algorithm. This

necessities the complete re-evaluation of the view definition

for any update transaction.

Query modification outperformed full

materialization for all parameters except for values of P less

than 0.35 for all values of cardinality. As indicated above

the cost of a single update transaction for full

materialization quickly drives its cost higher than an other

strategies.

In this case as the number of updates increased

the aggregate cost for query modification dropped since the

cost of updating base relations to support this strategy are

not timed. The cost of processing four or less updates

(average cost per update for query modification is 0) combined

aggregate cost for processing six queries (average cost per

query is 33.6 seconds) is more than the cost for processing

the same number of transactions for full materialization.

Full materialization's superior performance for

lower values of P is evident and is based its low cost for

processing queries on the view. This advantage was quickly

overwhelmed by the overhead of maintaining the fully

materialized view [Ref. 4].

53

Semi-materialization performed best on hard disk

for all parameters expect for a value of P of 0.1 or less.

Full materialization was the best performer for that value of

P because the only transaction performed for those values was

query processing.

As indicated above, semi-materialization is the

best strategy for processing view definitions using general

expressions for predicates.

It is interesting to note that the results shown

in Figures 17 through 28 show that, in general, the

performance trends for the view processing strategies are the

same for P, fv, fq, and I for the entire range of values for

cardinality of POS.

54

V. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this chapter is to state conclusions based

on the research and make recommendations for improvements and

further study on the three view materialization strategies.

A. CONCLUSIONS

The empirical data of this thesis confirms that the semi-

materialization strategy is best method for processing views

with predicates using general expressions.

The performance of semi-materialization with the database

in RAM exceeded the trends forecasted for general expressions

for the analytical model or actual results achieved on the

earlier experimental study (Ref. ?]. This is reasonable

because of the cost penalty paid by the strategy when it

becomes necessary to access a hard disk to perform updates and

queries.

The trends for the simulations for semi-materialization

with its database stored in RAM indicate it may be suitable

for near real time view processing using general expressions

based on its relatively low average costs for updates and

queries.

55

Full materialization performed well for lower values of P

due to its low average cost per query while query

modification's performance was good over all parameter values

but both strategies are less efficient than semi-

materialization for general expressions.

Select-project-join view definitions with the database in

RAM proved to be the most cost effective method for view

processing (see Figures 9-12).

Overall performance for all parameter simulations using

this view definition and the ram disk drive were three to five

times faster than similar runs using a hard disk drive. These

savings are significant when considering view processing for

the small databases inherent to tactical environments.

B. RECOMMENDATIONS AND FUTURE RESEARCH

We recommend that the same simulations for select-project-

join and general expressions be conducted with an 80486

processor with a minimum of 16 MB of RAM to test databases

with up to 20K records. The internal 8k cache and math co-

processor should significantly reduce the processing times for

all three strategies using either view definition.

We predict that this approach could improve the

performance of the semi-materialization strategy well enough

to make it feasible for use with real time tactical systems.

56

For example, the electronic order of battle maintained on

board a tactical aircraft could be completely updated during

or enroute to an engagement using information received by its

own sensors or sensor information passed from other sources.

This strategy could be used in conjunction with the Joint

Ocean Tactical Surveillance (JOTS) system to provide a real

time computer generated picture of the tactical and strategic

environments.

Used in this manner, JOTS could be placed on board classes

of ships which do not have the Naval Tactical Data System

(NTDS) installed on board at a tremendous savings over back

fitting the vessels with NTDS. The information would improve

the vessel's mission performance by keeping the Commanding

Officer constantly updated with real time battle group

position data and allow for the information received by that

vessel's sensors to be incorporated into the tactical picture.

We also recommend conducting more simulations on actual

databases with more than two relations, and updates applied to

several relations.

Finally, further work is needed to investigate the

performance of view processing strategies in the presence of

overlapping views over the same relation.

57

APPENDIX A. DATA GENERATION PROGRAM

58

/*Author: Curtis Barefield '/

/*Title: Data Generation Program */

I*version: MS C 6.0 /C.. (T2) /

/*created: 17 June 91 */

/*updated: 11 Aug 91 '/

/ete..e eeeae~eeeeeeeeea eeeee~e* .. e*eeeeaeeeaeaeaeeeea~teeeeeeeea*ee

* This program was written to replace the previous hardwired test database a

* generating program with a more generic program. This program generates the text records*

C used to create the database used to test the view materialization C

C strategies purposed by Professor Magdi Kamel. The associated test C

C pg has been written by Lt. Jesse South, USN, a CSM student in class PLO3. C

#include Cstddef.hC

#include (stdio.h)

#include (stdlib.h)

#include <time.h>

#include <ctype.h)

#include (string.h>

#define size 16 /* sets buffer size for output file name */

#define ALPHA 1 /* set buffer for type/info values */

#defin. BOUND 6 /* set buffer for upper/lower bounds*/

/*DEBUG TOGGLE */

#define TROUBLESHOOTING 0

/* I sends debug data to output.txt file C/

/C prints data used for debugging pg */

void print_random-generator_array(int. int*). print boundedarray(int. long*);

/C used to read data into structs */

int rand). count, incrementl. increment2. increment3. t:

long in. resultal. results2, results3:

/* modules used to generate random values /

unsigned timer, timehack():

void srand(unsigned int):

FILE *inputfile, Coutputfile: /e file pointers for text files /

59

struct field-attributes

char field type[ALPHAI:

int field-width:

char field informationEALPHA):

char -ower bound[BOUNDI:

long increment:

char upper bound(SOUND);

struct field attributes'nezt:

)ATTRIBUTE;

struct spec-type

long number of records:

mnt number-of field.:

char file nemetsize];

struct field_attribute. *first-field:

atruct spec-type *next:

)SPECIFICATION:

/0 declares modules used to generate attributes 0

void type_alpha(struct field-attributes a):

void type numeric(struct field attributes *):

void bounded sequential arrayC long, long. int):

void type alphanumeric(struct field attribute. s

void counter(int. int);

void random generator(int. int. int):

void print-database_specifications(struct spec_type fl:

void random long array(long. long, long):

struct spkc type *list - MULL:

60

void main))

char file naietsizel. field-typetALPHA), field information[ALPHAI:

char c-lover-bound[BOUNDJ. cupperbound[BOuND]:

long number of records;

int field-width, number-of-fields. i. increment:

/* creates and defines ptrs used for linked lists&

struct field_attributes *new-attribute- NULL:

struct field-attributes *next-field - NULL;

struct field-attributes *end - NULL:

struct spec type 'new-spec- NULL:

struct spec type *top spec -NULL:

struct spec type 'next spec- NULL:

list - NULL:

input file- fopmn('dat_in.-r-:

if) (input file)-NULL)(

printf("ChN NOT OPEN INPUT FILE\n):

/*opn input file'/

/* loads structs and creates linked lists*S

whila(! (feof(input-file)))

/* allocates memory for each specification struct ~

new spec - (struct spec_type ')aalloc(siseof(strlct spec type)):

if(top spec -- NULL) /* sets ptr to top of linked list ~

top_spec -new spec:

next-spec *new spec:

list -new-Spec:

elso

next_spec-)next - new-Spec:/* sets ptr to next Spec ~

next spec - next spec-)next;

61

/* read in data an' loads structa

if(l !-(fscanf(input-file."%ld*.&number of records))))

printf(* UNEXPECTED VALUE. PROGRAM TERMINATED.-):

exit (0)

next_apec->number of recorda-number of_record.:

if(I ! (fscanf(input-file.'*ld.&number_of-fields)))f

printf(" UNEXPECTED VALUE. PROGRAM TERMINATED."):

exit (0)

next epec-)number-of-fields.number-of-fieldts:

if(l !-(fscanf(inputfile."%s"*.file-name))))

printf(" UNEXPECTED VALUE. PROGRAM TERMINATED."):

strcpy(nextsxpec-)file-name file_name):

next apec->first_field - NULL:

next spec-)next - NULL;

/* create linked list for attributes C

for(i-O: i~next_spec->number_of_fields: +,i)

/* allocates memory for attribute struct C

now-attribute -(struct field attributes *) malic (aizeof(atruct field-attributes)):

if (next spec-first_field -- NULL)

next~upec->first field - new-attribute: /* sets ptr to top of list '

end - next spec- first field:

else

end-next - new-attribute: /C sets ptr to next attribute C

end - end-)next:

/C load attribute struct C

printf(' UNEXPECTED VALUE. PROGRAM TERMINATED."):

exit (0):

62

strcpy(end-)field type. field type):

if~l !-(facanf(input_file."%d*.&field-width))){

printft" UNEXPECTED VALUE. PROGRAM TERMINATED.");

exit (0)

end-ifield width-field-width:

if~l !- fucanf~input_file.,".*field information))))

printf(** UNEXPECTED VALUE. PROGRAM TERMINATED."):

exit (0):

strcpy(end->field information, field-information):

if(l !-(facenf(inputfile,"%suc lower bound))){

printf(" UNEXPECTED VALUE. PROGRAM TERMINATED."):

exit(0):

mtrcpy(end->lower bound~c_lower_bound):

if(l !-(facanf(inputfile.'2d",.&increment)))(

printf(- UNEXPECTED VALVE. PROGRAM TERMINATED."):

exit (0)

and-)increment - increment:

If(l !-(fecenf(input file. *e".c upper_bound)))(

printf(" UNEXPECTED VALUE. PROGRAM TERMINATED.");

exit (0)

strcpy(end-)upperbound.c_upper_bound):

end ->next -NULL:

feLoe(input file);

/e Redirects monitor output to text file called output.tzt C

#if TROULESNOOTING

f reopen (output. tit" "w' . tdout):

print dataheme epecificatione (lint):

t-0:

#def ine DEEP-DEBUG 1

Oendif

63

/* uses. system time to generate random number *

timer-time hacko(:

srand(timer):

/* uses linked list to read each spec (BEGIN PG EXEC)'

while(list !- MULL)

resultal-O: 1. sets module "counter" to zero/

results2-O:

result&3-O:

incrementl-O:

increment2-O:

increment3-O:

output_file- fopen(list-)file_name.'w"):

if) (output file) .sNULL)(

printf("CAN NOT OPEN OUTPUT FILE\n"):

.uittO);

S/-Opn output file-/

/BUILD DATABASE TEXT FILES/

for(in.O;Intliet-)nLmber-of-record. +.in)

next-field - list-)first field;

count-O:

while(next field !-NULL)

if(nezt_field -> field type[Oj--'A')

type alpha) nest field):

ele if (next field -> field type(O].'N')

type nuueric(next-field):

em if (nest-field -) field type(O]--O*)

type alphanuaeric(nest field);

64

next field = next_field->next:

if(next field !-NULL){

fprintf(outputfile.":"):

fprintf(output fIle."\n"):

list - list->next;

fcloae(outputfile):

exit(O):

* Time Hack uses the system clock to provide the seed value

* for the rand and srand library functions. •

unsigned timehack()

clockt randinput:

unsigned seed input:

randinput-clocko:

seed input=(unsigned)randinput:

return(seed input):

C Bounded sequential array C

• creates a bounded array which is used with the rand() library *

* function to select from a user specified number of array

elements to return a value from within that array. C

void bounded sequentlal array(long incrment. long_ lower bound. int number of values

int m. long index:

long *long storage.long low:

/* allocate storage space in memory for array ./

longstorage=(longe)calloc(nuaber ofvalues.sizeof(long)):

65

/* fill array */

long-storage(O]-long_low-long_lover_bound:

for(m-I: m< number-of-values: m--)

long storagetr~j long_low *-long increment:

/e select value fm array using generic random generator/

long index-(rando~number of-values):

fprintf(output file. "*051d" .long storageC long index]):

#if DEEP-DEBUG

if(tl)(

print_bountded array(number-of-values, long_storage):)

#endif

Type alpha generates alpha character string to fill user

edetermined field si2*

void type alpha(atruct field attributes *next field)

char c:

static char start-'A'-1:

mnt J, increment. lower-bound, upper bound:

mnt number of values:

long-increaent, long lower bound;

/****ee. Conversions for Random Generator e*Cee,

lo~~ord(n)nz~il - lower bound(OJ):

upper_ bound-(int) (next field - upperbound[OJ):

increment-next field - increment:

/CeeeeeeeeeConversions for Bounded Array eeee

long lower bound-(atol)(next field -)lower-bound):

long increment-next field -)increment:

number -of walues-(atoi)(nost-field -)upper_bound):

if next-field - fieldInforuetion(OJ-Rt) /* Random field selected 5

random_genorator(increment. lower-bound, upper-bound):

66

also if(next field - field_informationCO].. B') I' Bounded sequential field

selected/

bounded sequential_array(long increment. long lover bound, number_of_values):

else if(nazt field -)field-information(O).-'X 2:D*

/* countup counter places chars 'A-'Z' in field 5

for(J.O:J~next field - field width;.+j) /* sets field width 5

if(start >-'Z')

S1

start- 'A'

else

--start:

fprintf (output_file."%c'.stsrt): 1* prints alpha char to

output file 5

Type numoic generate* numeric chararters to fill user

determined field six*

Void type numeric(struct f isld-at tributes *next-field)

char c:

static start.'O -1:

mnt J. lower bound, increment, upper_bound;

int numb r-of-va lues, increment c. lover bound c:

long increment. long lower bound. increment long array:

long lover bound long array. upper bound long array:

67

,**********Conversions for Counter CC5*C5*C

increment-c - next field-)increment:

lower bound c -(atoi) (next field-Ulower bound):

/******* Conversions for Random Generator

lower-bound-(int((next field ->loer-bound[O]):

upper bound.(int) (next_field ->upper-bound[O]);

increment-next field -)increment;

/C*C****C**Conversions for Bounded Array '~~

long lover bound(atol) (next field ->lower-bound):

long increment-next field - increment:

number-of-velues-(atoi)(next field -)upper_bound):

,eeeeeeeeConversions for Random Long Array ******/ 4

lover bound long array -(atol) (next field -)lower-bound):

increment_long_array s(long)(next field ->increment);

upper. bound long array -(atol) (next field -.upper bound):

if(next field ->field_informationCO]-. S* /* sequential counter '

counter(incroment_c. lover-bound_c):

count--;

else if (next field -fieldinformation[O-'R') /C Random C

random generator(increment. lover bound. upper bound):

else if (next field - field informtion(O-'S*) I' Bounded sequential C

boundedgequentialarrey(long increment. long_lover-bound, number-of-values)

else if (next field -)fieldinformation(O].'X') /* Random long array '

random long errey (incrementlongarray. lower-bound-longarray. upper bound_long_array)

else iflnezt field -,fIeldInformation(O).'D')

68

/* countUp Counter. fills field with '0' - '9' in sequence .

for(J-0:J'next field ->field width:..J) /* sets field width

if(start >-9')

start- '0'

also

-+ start:

fprintf(outputfile."%c".start): /* prints numeric char to

output file e

* ype alphanumeric generates alphanumeric chararters to fill

* user determined field size

void type alphanumeric(struct field_attributes 5 neat field)

char c, d:

mnt J. k /*. count.0/

static char olpha-W''-I:

static char numeric-*O' -1;

mnt alpha_field-width, numeric_field-width:

alpha field-width-(atoi) (neat field ->lower-bound):

numeric-field-width-(atoi) (neat fleld ->upper bound);

69

for(J=0:Jpalpha_field-width:..J) 1. generates alpha chars A-''

if(alpha)-'Z')

alpha-'A'

*Ise

-- alpha:

fprintf (output file.*%c",slpha):

for(k.0:knumeric_field-width:..k) /' numerics '0'-9'*

ifnumeric)-9')

numeric- '0';

also

+.numeric,.

fprintf(output fils."%c".nuueric):

70

* Random generator takes a lower, upper and

i increment int value, creates an numeric array and

* uses the functions rand)) and srand)) to

C select an array element which ..eybe converted to a

* alphanumeric char for printing to the output file,

void random generator) int increment. int lower-bound. int upper bound)

/* Declare module data elements 4

mnt numeric-index:

mnt output from array:

mnt generate numeric array(int.imt. int);

char alnumwcharacter_output:

/0 Compute arrar cas */

numeric Indes- (fupper bound-lower bound)/increment);

I* Determine if a set of bounded random numbers are required 5

if(((lower-bound47)&fupper bound(58)) ::(lover bound 64)&&(upper bound(91))

output_from_array. generate_numeric-arrey(numeric_index, increment, lower-bound):

alnum-character-output.(char) (output_from_array):

fprintf(output file. "%04c".alnum-character output):

else

output from array. gone rate num r icsarray (numeri c_i ndex, increment, lower-bound);

fprintf (output file. "204d-. output from array);

71

* Random long array ,akes a lower. upper and

* increment long value. creates an numeric array and

uses the functions rand)) and srAnd)) to

* select an array element which is printed to

* t~he output file.

void random_long_array) long increment_long_array, long lower-bound lonc array, long

upper_bound_long_array)

/ * Declare module data elements *

int m. index:

long numeric-index. low:

long *output from array:

long Output_from random:

/* Compute array size */

numeric-index. ((upper _bound_long_array-lower-bound long array)/increment-long array):

if(numeric index(2O)

/* Allocate memory block for long array*/

output-from-array- (long~lcalloc(numeric index.sizeof(long)):

/* Set lower bound of array */

output-from-array(Ol- low- lower-bound_long_array:

/* Load array */

for(m-l:acnumric_index~m..)

output from arrayte]. low-- increment_long_array:

index- (randO~numeric index):

fpri'tf (output file. "%04ld' .output from_array~indezlI);

ou tput_from-random- (l.(rend()upper bound long array)):

fprintf(outputfile.t%041d',output_from random):

72

* Counter uses lower bound and increment to act as

a a sequential counter for max of nlumbers per spec-type.

void counter(int increment c. int lower_boundc)

/*****t~t**FIRST COUNTER

iff(in-.O)&&(resultsl=O)&&count'.O))

resultal - lower boundc:

incrementi - incresent-c:

else if(count-sO)

resultsl - resultal-incrementl;

if(count-.O)4

fprintf(output_file."%O4ld*'resultel):)

/********SECOND COUNTER tattt/

results2 - lower bound c:

increment? - increment-c:

else if(count--l)

results2 - result&2.increment2:

if(count-al)

fprintf(output file. %041d 'results?);)

1 *.,te~n*.THIRD COUNTER atteeC

if((in..O)&B(results3..O)&&(count-.2))

results3 - lover-bound-c:

incremont3 - increment-c:

73

else if(count--2)

results3 - results3.increment3;

if(count-2H

fprintf(output-file."%O4ld".reaulta3):)

* Generate numeric array produces id bounded*

* array and uses the randC) function to simulate a real

* random number generator

int generate_numeric array~int numeric index. int increment,

int lower-bound)

Int m. index:

mnt *numericastorage. low;

numeric atorage=)int*)calloc(numeric index.sizeof(int)):

numeric atoragaCO]. low - lower bound:

for(e-l: u~numeric-inde=: z.

numer.lcatoragefol-low -- increment;

index-Irando)numeric indes);

return (numeric atoraga Cindea]):

#if DEEPDEBUG

if(t'1) (

print rando._generator-array(numeric index, numeric-etorage):)

#endif

74

f*5*555555PRINT RANDOM GENERATOR ARRAY *5 **5555f

void print_random_generator array(int numeric indem.int *numericstorage)

int i:

for(i-O: inumeric_index~i..)(

printf(* array[%d] - %d\n".i.numeric storage~ijD:

f55555555*5555PRINT BOUNDED ARRAY *5*e5555555555*55/

void print_bounded_array~int number of values. long *long storage)

Int i:

for(i.O~inumber-of-values:i..){

printf(* array[%d] - %05ld\n-.i.longstorage~i]);

* Prints specifications Including all attribute link lists *

void print database_specifications(struct spec type *list)

struct field-attributes *next-field:

mnt i, 1-0:

printf("Printing link lists for generic database generator\n*):

whileflist !-NULL)

i-0:

A printf("\tSPEC %d\ri"...l):

printf("\tTher* will be %ld recordx\n".Iist-)number of_records):

* printf("\Tther* will be %d fislds\n' list-)number-of_fields):

printf("\t~he file nsues is %a\n".list-)fil*_name):

next-field - list->first-field:

while(nezt field !-NULL)

printf("\tField %d:\n...-i);

printf("\t~s is field type\n".nezt-flild->field type):

printf("\t~d is field width\n".nezt field-)field-width):

75

printf('\t~a is field info\n",next_field-)field_information):

printfV"\t~a is lower bound\ni.next_field->lower bound):

printf('\t~ld is increment\n'.next-field-)incremeni):

printf('\t~a is upper bound\n".next_field- upper bound):

next-field *next-field-next:

list -list-)flCt;

76

APPENDIX B. VIEW MATERIALIZATION SIMULATION PROGRAM

77

/* Title View Materialization Simulation (vsgxpdp7T)/

/* Author Jesse T. South 0/

/* Date 17 June 1991

/* Revised 25 July 1991 /

/* Modified for general expressions 22 AUG by Curtis Barefield /

/* Purpose Thesis Research

/* System IBM 80286 clone/ 80386SX *1

/* Compiler Microsoft C 6.0. INGRES precompiler.(Borland C--) 'I

/* Description The program is part of a thesis /

#include <stdio.h>

#include tstdlib.h

#include (time.h>

#include <math.h>

exec sql include sqlca:

#define size 16

#define dbinfo "info.dat"

#define cntrlfl "cntrl.dat"

#define update file "data_in"

#define finralt "fnlrslt.dat"

#define runralt "rnrslt.dat"

exec sql begin declare section;

#define empinfo "empdat.dat"

#define posinfo "posdat.dat"

#define skilinfo "skildat.dat"

#define updatinfo "update.dat"

ezec sql end declare section:

void open_files(FILE
*e
. FIL

E
". FILE"):

void closefiles(FILE
e e

. FILE**. FILE**):

void init_teat detabase(int):

void scan dbinfellong'. long*. long*, int
5
. int*. int*. long*. iong*. long*):

void create tablea(void):

void create views(int):

void create-update table(void):

void copybase_tables(void):

void copysemi_n_full mats(int):

void crestetable index(void):

void sodule_qm(char. int, long. double*. FLe):

void module sm(char. Int, long. double'. FILE*);

78

void module fm(char. int. long, double*. FILE');

void write tile headinga(char*. char'. FILE*. FILE*):

void write run result(char. char. int. long, double, long. FILE*):

void write final result~int. int. long. int. long. long, long, float.

float, float, float, float, double, double, double. FILE'. FILE*);

void compute avg time~int. double*, double', double');

void compute_ fv-and- fq_and_P (int. int. int. int. float', long. long, long.

long. float*. int. int. float');

void compute table counte(long*. long'. long', long, float', float'):

void refresh update_text_file(long. long, long):

void main~void)

mnt K, Q. updatsiz. i. run_cnt - 0. zero - 0:

mnt yin,:. vbase. vincr. viewcut:

long *card. pcard. scard. countb. countv. countq:

long qmax. qbase. qlncr. querycut:

float fv. fva. fq. fqa. P:

double timaqm. timeam. timefm:

char QUERY - 'Q'. UPDATE - 'K':

char *prm-ptr. parameter(l0]. 'updtptr. updat-rel[lo]:

FILE 'cntrl fl. *freult-fl. 'run-relt:

prmptr G paramter(0]:

updtptr &updat-ral[l0:

open files(txrun rslt. Gcntrl fi, fifresult-fi):

scan-dbinfo(&pcard. &ecard. &iscard. &vma., &vbae &vincr. Squez. Gqbase.

Gqincr):

while(!foof(cntrl-fl))

timeqn - tiss - tisefs - 0.0:

countb - countv - countq - 0:

fscanf(cntrl-fi. "%d %ld %d %d %d %a W, Qyisycut. CSquarycut. MK SQ.

&updat six, pro ptr. updtptr);

* if (run-cnt -- zero) write file-hesdinge(prmptr. updtpytr. tresultfl.

run ralt):

init test datasee(viewcut);

run cnt..:

printf(-\n run 0 Wdn". run_ cnt):

79

for(i - 0: 1i K: L--)

refresh update_text_file(pcard. i. updat_siz):

module qm(UPDATE. viewcut. querycut. &timeqm. run_rslt):

module-seCUPOATE. viewcut. querycut. &timeum, run rslt);

module-fm(UPOATK. viewcut. querycut. &timefoi. run_rslt):

for~i - 0; i (Q: 1--)

module qm(QUERY. vieweut. querycut. &tie~q., run-ralt):

module .m(QUERY. vievcut. querycut. ×m. run rslt):

module-fm(QUEXY. viewcut. querycut. &xtimefm. run-ralt):

compute_avg_time)Q. &timeqm. &tlmeam. &timefm);

computefv-andfq_and_P(vmez. vbase. vincr. viewcut. r&fv. qeex. qbaee

qincr. querycut. &fq. K. Q. &P);

compute_table_counte(Acountb. &countv. &countq. querycut, Ofva, af qa):

write final result(run cnt. viewcut. querycut. updat_siz. countb. countv.

countq. fy. fva. fq. fqa. P. timeqm. times.. timef,.

fresult-fl. run ralt):

exec eql disconnect:

system (rmingree"):

close-filee(arun-ralt. Qicntrl_fi. &fresult £1):

printf("\ndisconnect coapleta\n"):

80

void init test detabase(int viewcut)

system("destroydb magdi"):

system(*createdb magdi*):

system('addingres -9 -D64000');

eXec sql whenever sqlerror
stop;

ezec sql connect magdi:

create tablesO):

create-views(viewcut):

copy base tablea():

copy semi n fullaa(viewcut):

create-table-indexU:

void open files(FILE *ran rslt. FILE **entrl_fi. FILE **fresult -fl)

*cntrl-fi - fopen(cntrlfl. "r");

*frssult-fi - fopen(finralt. "a"):

*run-ralt - fopen(runrslt, "a"):

if((!*run ralt) ::(!cntrl fi) ::(!fresult fll

printf("\nERROE: control or output files did not open");

fcloneall();

exec sql disconnect;

Ozit(1):

void close files(FILE "*run rslt. FILE **cntrl-fl. FILE **freault_fi)

A int 1:

fprintf('frssult-fi. \n"):

for (i-Oi<8O:i++) fprintf(*frsmult-fl."*"):

fclo.* (*rum_rslt);

fcda.. (*cntrl-fl):

fclose (*fresult-fl):

81

void scan-dbinfo(long* ecard. long* pcard. long* scard. int' vmax, int' vbase.

int* vincr. long* qmas. long* qbase. long* qincr)

FILE* db info:

db info -fopen(dbinfo "r");

if(!db info)

printf('\NERROR: dbinfo file did not open

fcloseall();

exec sql disconnect:

*zit(l);

fecanf~db-info. "%ld %ld %ld\n'. G'ecard. &'pcard. &card):

fscanffdb info. "%d %d %d\n*. G'vusz. &'vbase &'vincr);

fecanf(db info. "*%ld %ld %ld". &'qmax. &*qbase. G'qincr):

fcloso(db info):

void create-tableaU)

/* create query modification tables '

exec sql creste table posqe

(a-num integer?. anum integer2, level intageri. keyno integer?.

accinfo c86):

exec sql create table supqm

(e-num integer?. dnuu integer?, ensue c2O. address c7O.

salary integ~r4. title c30. jobdesc c6O):

exec sql creste table skiliqa

(enue integer?, ensue c2O. stype c34);

/* create semi-materialization tables ~
exec sql create table posse

(*-nun integer?. *nun Integer2, level integeri. keyno, integer?.

accinfo c86):

exec sql creste table amps.

(a-nun integer?. dnum integer2, ensue c2O. address c70.

salary integer4. title c30, .Iobdeac c6O):

exec sql create table skills.

(snm integer?, sname cO. styp. c34);

82

eec aql create table pa._prim

(a-num integer?. keyno integer?):

exec sql create table emp prira

(e-num integer?, aflame c2O. salary integer4):

1* create full materialization tables 5

eec aql create table posfm

(e-num integer?. anum integer?, level integeri. Ikeyno integer?.

accinfo c86):

exec sql creae table empfm

Cs-num integer2. dnun integer?. ename c2O, address c70.

salary integer4. title c30. jobdesc c60):

exec sql create tsble skillfm

(anum integer?. sname c2O. *type c34):

exec sql create table full mat

(g-nu, integer?, enae c20. salary integer4. keyne integer?):

void create-views~int viewcut)

eec sql begin declare section:

mnt view-cut:

eec sql end declare section;

view-cut - viewcut:

&M rpm ana mnaa. asnar2 ss sa-aay otr.~n

where &&Lnta

(select *

fram no&=. innar2

A. where anna... nuna inner? s nun

ad outar2.ksyna *innar2.csvnc

and innar2.laysl c ie ut),

83

.xcsal create vieX m viewfe rum, engne. salary- keynol As

select ep prim-e num amp prim-engine. eimp PriinsAlary- outer4-keyno

from amp-prim Do&- Prim outer4

where e&xists

saelect *

from pos-prim inner4

where samoprim-e num a inrAer4-e nun

and outer4.kevn ne4kvc

void create update tsble()

exec sql create table update_tbl

(e-num integer2. snum integer2. level iritegerl. keyno integer2.

eccinfo c86):

exec sql copy table update tbl

(a nun - cOcolon. soum- cOcolon. level - cOcolon.

keyno - c~colon. accinfo - cOnl)

f rom :updatinfo:

void copy baeptables()

exec sql copy table poscqa

(p oum - cOcolon. soun - cOcolon. level - cOcolon. keyno - cOcolon.

accinfo - cOol)

from :posinfo:

exec sql copy table pose.

(e oum - cOcolon. soum - cOcolon. level - cocalon. keyno - cOcolon.

accinfo - cOnl)

from :pominfo;

exec sql copy table poefu

Ce num - cOcolon. gnu. - c~co1'no. level - cOcolon. keyno - cOcolon.

accinfo - cOnl)

from :posinfo:

exec sql copy table eapqm

(p-num cOcolon. dnum - cOcolon. enams a cOcolon. address - cOcolon.

salary acOcolon. title - cocolon. Jobdeec - cOnl)

from :eupinfo:

84

exec sql COPY table eupse

(e num c~colon. dnum, . cOcolon. ename - cOcolon. address - cOcolon.

salary =cOcolon. title - cOcolon. jobdesc = cOnl)

from :empinfo:

exec sql copy table *mpfm

(e-num *cOcolon. dnum - cOcolon. ename - cOcolon. address - c~colon.

salary =cacolon. title - cOcolon. jobdeac -cOrd)

from :empinfo:

exec sql copy table skillqm

(snum - cOcolon. sname - c~colon. stype - cOni)

from :akilinfo;

exzc sql copy table skillem

(snus cOcolon. sname - cOcolon. styp* cOnl)

from :skilinfo:

exec sql copy table skilifm

(anum - c~colon. &name - cOcolon. stype - conl)

from :skilinfo;

void copy semi_n_full sate(int viewcut)

exec sql begin declare section:

Int view-cut:

exec sql end declare section;

view-cut - viewcut:

exec sql insert into poe_prim Ce nun. keyno)

Select e nun. keyno

from posse

where level *- :view-cut;

e exec sql insert into amp prim (eanuS. *name, salary)

select a nun. enamie. salary

A from espem:

85

eze ao inertintofllate ae slrykno

select emofm.e num empfmffleafl emofm aayotr en

from emofm. yoofm ogter2

where exists

select *

from popfm inner
2

where empfm a num inner2.e nun

a.. nd outer
2
-keyno inner2 keY=l

and inner2.level , view cut),

void create-table-index))

ccsql modify empqm to cbtre. on e flue;

exeQc sql modify e tp m to cbtree on e ue

eec sql modify empfm to cbtree on O_n:

eec sql modify posqm to cbtree on level:

,ec sql modify posse to cbtree
on level;

*ec sql modify posfm to cbtree on level:

exec sql modify eap_prim to cbtree on salary:

exec sql modify poe prim to cbtree on e_nun:

exec sql modify full-met to cbtree on salary:

/C create secondary indexes ~

exec sql create index empqmdz

on empqm (e num):

exec sql create index ampamdz

on ampsm (e nun):

exec sql create index empfmdx

on ampfma (e nun);

exec sql create index posqudi

on posqa (level):

exec sql create index possudz

on posse (level):

axec sql create index poofmdz

on posfm (level):

exec sql create index e-primdl

on emp prim (salary);

exec sql create index pprimdx

on posprim(e nux);

86

exec aql create index fmatdx

on fullmat (salary);

void moduleqm(char cntrl char. int viewcut. long querycut. double *timeqm,

FILE *run ralt)

clock t tatart - 0. tatop - 0;

double elaptime:

long tbl cnt - 0:

exec sql begin declare section:

int view cut:

long querY cut:

long qnum:

char qname[21]:

long qkeyno:

exec sql end declare section:

ezec sql declare qmcl cursor for

select e num. enae. keyno

from full-view

where salary), :query cut:

view cut = viewcut:

query cut * querycut:

switch(cntrl_char)

f

case 'K':

create update table():

ezec sql insert into posqe

select *

from update_tbl;

ezec sql drop update_tbl;

brek:

came

tstart - clock(:

ezec sql open qucl:

ezec aql whenever not found goto closeqmucl:

87

wthile(sqlca.sqlcode -0)

exec sql fetch qm_ci

into :qnum. ;qname. :qkeyno:

/* printf('\nnunber - %d", qnum);

tbl-cnt..:

cloaeqa ci:

exec sql whenever not found continue:

tatop - clock));

exec sql close qm_cl:

break.

default:

printf("\nlncorrect control character\n");

break:

slap time - (tatop - tstart)/(douk~e)CLK TCX;

*tiaeqm - etiaeqm * elep time:

write-run-rult(q'. cntrl-char. viewcut. querycut. elap time. tblcnt.

runmralt):

void nodule em(char cntrl-char. mnt yiewcut. long querycut. double etimesm.

FILE *run-rslt)

clock-t tatart - 0. tatop -0:

double elap time:

long tbl cnt - 0;

exec sql begin declare section:

Lnt view-Cut:

long query cut:

long anus:

char sanue[21];

long ekeyno:

exec sql end declare section:

88

exec sql declare smmcl cursor for

select a num. eneae. keyno

from smview

where salary - :query cut:

view-cut viewcut:

query cut querycut:

switch(cntrl-char)

case K

create_update_table)):

exec aql Insert into poss

select *

from update tbl:

tstart - clock)):

exec aqi Insert Into pos prim

select e-num. keyno

from update tbl

where level >- :view-cut:

tatop - clock)):

exec sql drop update tbl:

break:,

case '0:

tatart - clock)):

exec sql open 5501l:

exec sql whenever not found goto closesm cl:

while (aqlca.sqlcode -- 0)

exec sql fetch smccl

into :snum. :mnaae. :skeyno:

/* printf(\nanuU - Xd". anus): C

tbl-cnt..;

exec sql whenever not found continue:

tatop - clocko:

exec sql cloe e ci:

break:

89

default:

printf("\Nincorrect control character\n")

break:

elap time -(tatop - tatart)/(double)CLKTCK:

*timesm - *timesm - elap time:

write run result('. cntrl char. view t. querycut. elap_time. tblcnt.

run rslt):

void module-fm(char entri-char. mnt vievcut, long querycut. double atimefe.

FILE *rnrlt)

clock-t tatart - 0. tstop - 0:

double elap time:

long qent - 0;

exec sql begin declare section.

int view-cut;

long query cut:

long tbl-cnt:

long f nun:

char fname(211:

long fkeyno:

:eec ql and declare
section:

alec sql declare fedc cursor for

select e nun. enane. keyno

from full-mat

where salary >- :query cut:

view-Cut * iewoist:

query cut *querycut:

switch (cntrl char)

90

eame 'K*:

creat,_update-table():

exec gql insert into posfa

select *

from update tbl:

tatart - clock():

exec sal, drou full mat,

(a nua intecer2- mome c
2
0- salary integer4. keyno Integer;11

mieplinsert into full-mat fep - nemfa. salary, kevnol

salect amof, p num. ampfm.eanM Ampfm.salary. outer.kayno

fro f fom outer

what& exists

-from posfa inner

where psafa.. num =inner-& num,

and oute-keyno *nner. kewno

and inner leay. c ie ut)-

siac sa modify ful-l pat octm slr

tatop - clocko(:

exec sql drop update tbl:

breakt:

case g.:

tatart - cloeko:

exec sql open fm ci:

exec sql whenever not found goto cloaefm_ci:

while (sqlca.sqlcode -- 0)

exc sql fetch fmuel

Into :fnum. :fnaate. :fkeyno:

/* prinitf("\n fnum - Zd". fnuu); .

qent..:

cloefs ci:

mime sql whenever not found continue:

tstop - clocko:

mic sql close fs cl:

break:

91

default:

printf("\Mincorrect control character\n"):

break:

elap time - (tatop - tstart)/(double)CL(_TCK:

*timefM - *timefM - elap-time:

exec sql select rowtot - countle num)

into :tbl cnt

from full-mat

where salary)- :query-cut:

write run result('f. cntrl-char. vieweut. querycut. elap_time. tbl_cnt.

run-ralt):

void write_file headings(chara pare,. char* updttbl. FILE* fresultfl,

FILE* run-rmlt)

time-t today_t:

time(Atoday t):

fprintf(fresult fl."\n %a - FINAL RESULTS (vsgxpdp7) -\n". ctima(&today_t)):

fprintf(fresult fl."\n The %a is the parameter being tested". param):

fprintf(fresult-fl."\n The %a table is the table being updated", updt tbl):

fprintf(run-ralt."\n %* - RUN RESULTS (vsgxpdp7) -\n", ctime(&todayt)):

fprintf(run relt."\n The %a is the parameter being tested-. param);

fprintf(run ralt."\n The %a table In the table being updatod\n". updt_tbl);

void write-run-result(char strat. char cntrl-char. int viewcut. long querycut.

double elap tiae, long tbl_cnt. FILE *run rslt)

printf("\n~ce cc.%c vc-%d qc.*ld et.*.21f tc-%ld". strat. cntrl char.

wiewout. querycut. slap_time. tbl cnt):

fprintf(run rslt.'\n~cm cc-%c vc-%d qc.UId et-.2Zf tc-%ld'.strat,

cntrl char. .iewcut. querycut. slap_time. tbl_cnt):

92

void write-final result(int run. int viewcut. long querycut. int updt-siz.

long countb. long county, long countq. float iv.

float fva. float fq. float fqa. float P,

double timeqm. double timeam. double timefm.

FILE *fresult-fi. FILE *run rslt)

printfl"\n\nRUN# %d, VCUT- %d. QCUT- %ld. #TtJP- %d. BASE- %ld. VIEW- %ld,*\

.QUERY- %ld". run. viewcut. querycut. updtsiz. countb. countv.

countq);

printf('\nFV- CU2. FVA- %f. FQ. %.2f, FQA- %f P- %.Zf",fv. fva. fq.

fqa. P):

printf("\nTIMEQM- %.31f sec. TIMESM- %.31f sec, TIMEFI= %.31f sec\n".

timeqe. time... timefm);

fprintf(fresult fi. \n\NRUNO %d. VCUT- %d. QCUT- %ld. #TUP- %d. BASE- %d. \

VIEW- %Ud. QUERY- %ld.' run. viewcut. querycut. updtmsiz. countb.

countv. countq):

fprintf(freuult fi. "\NFrV- %.2f, ?VA- %f. FQ- %.2f. FQA- %f P- %.2f",fv. fva.

fq. fqa. P):

tprintf(freeult_fl,2\NrIMEQM- %.31f sec, TIMESM- %.31f sec, TIMEFM- %.3lf'\

.. ec\n".timeqm. times.. timefm):

fprintf(run_rslt."\n\MRUN# %d, VCUT- %d, QCUT= %ld. OTUP- %d, BASE- %d. \

VIEW- %ld. QUERY- %ld". run. viewcut, querycut. updt_siz. countb.

countv. countq);

fprintf(run-rslt."*\NFV. %.2f. FVA- %f. FQ- %.2f, PQA- %f P- %.2f-, fv. fva.

fq. fqa. P):

fprintf(run_rslt."\NTXH3QM- %.31f sec. TIMESM- %.31f sec, TIMEFM- %.31f"\

sec\n-,timeqa. timeem. timefa):

void comjpute avg time(int Q. double 'timeqm. double *timesm. double *timefm)

if(Q) 0)

*tiinqu * timeqm / (douhle)g:

etimesm -* timesm / (double)Q:

*tinm *etisefs / (double)Q:

93

also

printf("\n\NERROR: dividing times by 0. ~~results are VOID ***\nl);

void compute_fv_and_fq_andP(int vmax. int vbase. int vincr. int vcut,

float *fv. long qinax. long qbase. long qinor,

long qcut. float *fq. int K. int Q. float *P)

*fv -(float)(vmas) - ((float)(vcut - vbase) / (float)(vincr)):

*fv -(*fv - (float)(vincr) / (float)(vincr)) /(float)(vuaz);

*fq - (float)(qmas) - ((float)(qcut - qbase) / (float)(qincrfl:

*fq - (*fq - (float)(qincr) /(float)(qincr)) /(float)(qmax):

*P- (flost)(K)/(float)(K Q)

void compute_table_courits(long *countb. long *countv. long *countq.

long querycut. float *fva. floe,- *fqa)

exec sql begin declare section:

long query cut:

long tbl cnt:

exec sql and declare section:

query cut - querycut:

exec sql creste table base-sat

(*_nun intager2. *name c20. salary integer4. keyno integer2):

exec sql insert into base mat Ce nun, enaea salary. keyno)

select empft...nun. empfms.ename. empfmA.salary. poofmakeyno

from empfm. poefe

where empfa.e nun - posts.e nun:

exec sql select rowtot -count(*_nun)

into :tbl-cnt

from base-oat:

*countb - tbl cnt;

exec sql select rowtot *count(e-num)

into :tbl cnt

from full-mat:

9coiumtv - tbl-cnt:

94

exec sql select rowtot =count(e numf)

into :tbl-cnt

from full-mat

where salary).:query cut:

*countq -tbl cnt:

*fva - (float) ((double)*countv / (double)*countb):

*fqa -(float)U(double)*countq / (double)*countv):

exec sql drop base sat:

void refresh_update_text_file~long card, long i. long update_siz)

long update-base:

int num-o ffields. J, changs field - 4:

char file nam.esizel - updatinfo. *file_ptr:

FILE *updat fl:

struct field-attrib

char field type:

int field-width:

char field-info:

long lower-bound:

int increment:

lnne upper bound:

struct field attrib *nexnt:

etruct field ettrib * first-field - NULL:

struct field ettrib *cuJrrent-field - NULL:

struct field ettrib aprint-ptr - NULL:

file ptr - &file naejetj;

update-bae - (1 a update sia) + card +1; /* compute new key base number C

95

l Read old control input for data generation program ~
updat -fl - fopen(update file. -r-):

if) ;Updat-fl)

printf('\NERROR: update control file did not open to read-);

fcloseall()

ezec sql disconnect:

xilt (1)

fecenf(updat fi. -%d\n-):

fscanf(updat fI. **d\n. ranus ofLielda):

fecanf(updat fI. "%*&\n-);

for (j - 1: j (num of fields: J--)

if (j .. 1)

first-field - (struct field_.ttrib*)aalloc(sizeof(struct field-attrib)):

if (first field -- NULL) printfV"\NERROR: Memory did not allocate!!!-):

current-field - first-field:

ele*

current-field-)noxt *(struct field attribe)salloc(sizeof(struct field attrib)):

current-field - current-field- nezt:

current flold-)next - NULL:

fecanf(updatfl. "\n~c\n". ¤t field->fieI1_typ*):

fecanf(updat 21. -%d\n". Acurrentfield- fieldvidth):

focanf(updat 21. "%c\n". &currntfield-)fieldnfo):

fscanf(updot 21. "%ld\n". &currsnt field-)low.er bound):

fecenf(updat 21. 1dWn'. fcurrent fiald-yincreuent);

fecanf(updat 21. "Ud\n". &currsnt field-)upper _bound):

If (j -- change field) 1' changing beae for keyne field C

current-fleld-)lover bound - update bes:

fclose(updat 21):

96

** writ* updated control input for data generation program ~
updktfl - fopen(update file. w"I:

ifi :Updat fi.)

printf (\NEROR: update control file did not open to write":

fclosoell)

exec sql disconnect:

*xit~l):

fprintf~updat fi. **ld\n-. update siz):

fprintf(updat fi. "%d\n". num of fields):

fprintf~updat_fI. "U",. file ptr);

print ptr - first field:

vhile(printptr !- ULL)

fprintf(updat (I. -\n~ntc\n". print ptr- fIeld type):

fprintf~updat fl. "%d\n". print ptr-)field-width):

fprintf~updat fl. "%c\n'. print ptr-)field info):

fprintf~updatfl. Sld\n-. print ptr-)lover bound):

fprintf~updet fi, *dWn". print_ptr->increment);

print ptr - print ptr-)nezt:

fclose~updat-fi):

syateel datagen-)

97

LIST OF REFERENCES

1. Date, C. J., An Introduction to Database Systems, 3rd Ed.,
Addison-Wesley Publishing Company, 1981.

2. Kamel,M., Davidson, S., Semi-materialization: a technnique
for optimizing frequently executed queries, Data and Knowledge
Engineering 6, North-Holland, 1991.

3. South, J., A performance Analysis of View Materializations
Strategies for Select-Project-Join Expressions, Master's
Thesis, Naval Postgraduate School, Monterey, California,
September 1991.

4. Kamel, M., Davidson, S., Semi-materialization: A
Performance Analysis, University of Pennsylvania, 1987.

98

INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

2. Administrative Sciences Department 1
Naval Postgraduate School
Attn: Prof. M. N. Kamel, Code AS/KA
Monterey, CA 93943-5000

3. University of Rochester 1
U.S. Navy ROTC Unit
Attn: CDR R. Griffin
Rochester, NY 14627-0016

4. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

5. LT Curtis G. Barefield Jr. 3
Department Head Class 121
Surface Warfare Officer School Command
Newport, RI 02841-5012

99

